VALLES MARINERIS TARGET LANDING SITE | +/-
PurposeMars DescentMars Ascent
VehicleMDVMAV
Units21
Designunpressurizedunpressurized
Weight Wet8000kg4500kg
Weight Dry900kg720kg
Engines9 Asterex9 Asterex
+/-
UPDATE 2016-05-12 12:49:06.315000
Space: Dispatches from the Garden of the Gods II
In a high power electric rocket, nuclear or solar energy heat plasma for propulsion.
In a high power electric rocket, nuclear or solar energy heat plasma for propulsion.
State of Space 2016: Humans to Mars and cube satellites
Vacuum tube of an atomic clock. At a meetup on Google we joined a few years ago Pulsars were proposed for autonomous deep space navigation far from Earth.
Vacuum tube of an atomic clock. At a meetup on Google we joined a few years ago Pulsars were proposed for autonomous deep space navigation far from Earth.
NASA
Space laser communication is very similar to current transmissions except instead of radio or microwaves, lasers are used to provide high data rates and capacity.
Space laser communication is very similar to current transmissions except instead of radio or microwaves, lasers are used to provide high data rates and capacity.
spacelaser.weebly.com
Slide of key milestones for NASA in the near future. (Use top scrollbar function for bigger images.)
Slide of key milestones for NASA in the near future. (Use top scrollbar function for bigger images.)
TT Sjogren
Slide of NASA's Mars wish list: In-space propulsion, high-bandwidth comm, life support, local resources, entry descent and landing (note no ascent), space robotics, lightweight materials, navigation and observation. (Use top scrollbar function for bigger images.)
Slide of NASA's Mars wish list: In-space propulsion, high-bandwidth comm, life support, local resources, entry descent and landing (note no ascent), space robotics, lightweight materials, navigation and observation. (Use top scrollbar function for bigger images.)
TT Sjogren
NASA's SLS crewed version, planned to take people first to an asteroid (2020's) and then to Mars (2030's).
NASA's SLS crewed version, planned to take people first to an asteroid (2020's) and then to Mars (2030's).
NASA
Cube sats are everywhere. This one was made in Sudan!
Cube sats are everywhere. This one was made in Sudan!
knsat-cubesat

Associate Administrator of the Space Technology Mission Directorate at NASA, Stephen Jurczyk laid out the problems awaiting the first human descent on Mars. We were all ears.

One main hurdle is that with current tech, NASA can only land 1 metric ton on the planet. Where our approach is a small vessel and cramped quarters, NASA wants big structures and sturdy surface systems catering to many which will take landing at least 18-20 ton.

This craves new lines of thinking but there’ll be plenty of time for that: NASA’s timeline for a return trip of humans to Mars is the mid 2030s, earliest.

With wrecked deadlines for Mars previously (almost every President in modern times announced a human mission to the red planet) and hefty delays at NASA in general, a first human Mars landing could well take place on the 100 year anniversary of our first steps on the moon (July 20, 1969).

More exciting is the new technology NASA is working on towards the project: High power electric thrusters and nuclear electric propulsion, very low volume fuel, multigig laser communication relays, deep space navigation using exact atomic clocks (and pulsars), low intensity light technology (since Mars is further away from the sun), 3d print habitats from trash or local resources assembled by robots, and how to get water from the soil.

We got the impression NASA actually enjoys playing with the new toys and is ready to give up much of the cargo transportation. The agency stressed it doesn’t want to be anchor tenant in future LEO infrastructure (the Space Station) and would buy the Mars cargo delivery if available.

A few weeks later SpaceX would make a bid on that offer.

Most of all NASA called for fresh business models coming out of New Space. Everybody wants to find gold in the New World.

A comment during the ‘Big Booster’ session led by former NASA Chief Scientist John Grunsfeld further drove home the agency’s current image of itself: “NASA’s new SLS heavy lifter is the explorer showing the way, while new actors like SpaceX are traders following the routes.”

Cube satellites

Closer to home NASA is into small launchers, in-space satellite repairs and VR/Oculus for training staff.

Because there was so much fuss about them this year, we decided to jump in on a session about cube satellites. Called minisats, microsats, nanosats, picosats and doves, most are privately built and launched on ride shares (leftover space on big rockets).

I recalled a decade ago listening to a Stanford professor who launched Rubik’s cube sized satellites with students for learning and fun. Who could have imagined the budding industry the experiments would give rise to only years later.

A satellite is a simple box that needs power, communication, attitude, navigation and propulsion.

Mini satellites weigh a few ounces to several pounds, and suffer limitations. Cubesats in deep space fail often, don’t last in orbit very long, have small aperture size, must be designed for constant vibration, ball bearing is a big issue, so is lubrication, just to name a few hurdles.

But don’t give up on your personal spy dish just yet. Presenters said there’s a Moore's law for spacecraft electronics right now, packing increasingly more components in each shoebox. One young manufacturer said his people build one box and start the second already before the first is finished “to shorten path of experience”.

The movement is building speed, paving way for interconnected satellite swarms linked with large commercial players for a whole new range of exciting applications.

Next: The Money


(State of Space 2016) Dispatches from the Garden of the Gods series:

Dispatch 1: Like a James Bond movie

Dispatch 2: Humans to Mars and Cube Satellites

Dispatch 3: The Money

Dispatch 4: The European flank

Dispatch 5: How safe are we

Dispatch 6: Conclusion

+/-
Asterex Rocket Engine
Asterex Version2.0. Metal 3D print
Asterex2.0 with tanks and propellant feed system.
Asterex Version2.0. Close up of pintle injector
Asterex ColdFlow Rendering
Napkin Sketches
Asterex Cut CAD
Asterex Pintle
Asterex 3DPrint
Asterex Lightup
Asterex light
Endoscope test
Cut text
Apollo patent 3D convert
Ancestry Composition Chromosome Painting
BiometTomTina
W kg8159
BPM6463
Sys112120
Dia7977
SpO2 %9898
Resp bpm--
Body T C37.137.0
REPORTS
UPDATE 09/05/2019
Report ID: c342a8ef-1c9e-4fa3-8cba-dd30617eb2e9
UPDATE 23/04/2019
Report ID: ae2ad53d-0d7e-4a1d-8c10-800b927eba0a
UPDATE 31/03/2019
Report ID: f59f4970-ccbe-40ea-9721-8b5c9361fa79
UPDATE 20/12/2018
Report ID: 1ab86d38-e5ea-4bd1-a329-bb4453dff611
UPDATE 12/11/2018
Report ID: 63fa6c85-5125-4f3d-b0f5-7b51452192bf
UPDATE 09/10/2018
Report ID: f3390c28-9cc1-4f85-a25a-d2520c478342
UPDATE 04/09/2018
Report ID: 0c8710a2-9b53-4fe9-9c0d-058662f02c42
UPDATE 28/08/2018
Report ID: 37cfc577-b9e0-4ebc-bc67-7dd12038431e
UPDATE 20/08/2018
Report ID: 69a6c1ab-fd84-4d1a-9cf3-6125d481d9e5
UPDATE 14/08/2018
Report ID: 7b19fb3b-9c4d-41d6-b452-30870e898a5a
UPDATE 09/07/2018
Report ID: 0c8e237f-b49f-41de-b057-6ad6d101bb38
UPDATE 19/06/2018
Report ID: 4dcd9a2c-84c4-4fe8-9e52-8d7f997be71c
UPDATE 04/06/2018
Report ID: dff3729d-a1ba-433f-b63e-555e1bf24bdf
UPDATE 24/04/2018
Report ID: d327b95d-f0f4-4d60-93a9-0c93706e38a1
UPDATE 23/04/2018
Report ID: 648df00e-856e-43f8-a59d-f3461fcd644b
UPDATE 06/04/2018
Report ID: b2e0a1bc-e2b2-41b6-abb5-5721f24a863b
UPDATE 27/02/2018
Report ID: 47ec71d5-3002-4480-8407-273ccfdd8653
UPDATE 21/08/2017
Report ID: a693733a-2566-45c2-b5ee-16ff0970b0c0
UPDATE 05/06/2017
Report ID: 62eb784d-7186-4827-8772-996b7348f93c
UPDATE 20/05/2017
Report ID: f9a34b57-2f4f-41b7-9cbb-660f543dd0bf
UPDATE 13/05/2017
Report ID: d4715fd1-c3f2-4cc6-bc05-cd52137965b8
UPDATE 11/05/2017
Report ID: 43c3dd80-00da-4903-8fd4-4e3b4bc87b95
UPDATE 27/04/2017
Report ID: 8a19244e-db3f-4c08-9202-ac5bffd0be0e
UPDATE 11/04/2017
Report ID: c84882b3-7766-457c-9e07-3ce06f6b87aa
UPDATE 04/03/2017
Report ID: 3c294a65-d7f9-4c33-a638-d1cf6d8ea905
UPDATE 06/02/2017
Report ID: 74b5ec43-16c0-4df7-99d7-92d890c565ff
UPDATE 03/02/2017
Report ID: 08ab2b7d-d058-4bbd-8628-494c94b76263
UPDATE 02/01/2017
Report ID: e773b8bc-813c-4969-ba98-bd62d560c2ef
UPDATE 28/12/2016
Report ID: 1c1f4c37-83e5-446c-80fd-0eaa3f39307f
UPDATE 09/12/2016
Report ID: 355eacad-9e0c-443e-a4ef-003f070cdc73
UPDATE 05/07/2016
Report ID: b414c3c9-dd9c-45bc-b026-e14f1a3baaa8
UPDATE 15/05/2016
Report ID: 0d80cc69-65ad-4da0-9f39-bb03efef4124
UPDATE 15/05/2016
Report ID: 2d645929-011c-4df4-a1b5-2b8230a3b70e
UPDATE 13/05/2016
Report ID: 2d6a777e-696c-4b5e-b159-4fdb66d90af3
UPDATE 12/05/2016
Report ID: b28079be-232c-48d5-8f6a-5f4f845342a2
UPDATE 17/04/2016
Report ID: 037bb255-3471-42af-a83f-a4090b7c425d
Space stories pre 2014
Space ship
Jonathan Sensor Simulation. Runtime:
Humidity: offline
Sensor ID: S000000001
Temperature: offline
Sensor ID: S000000002
Pressure: offline
Sensor ID: S000000003
Pressure Airlock: offline
Sensor ID: S000000019
O2: offline
Sensor ID: S000000022
O2: offline
Sensor ID: S000000024
EVA Suit 01
Humidity: offline
Sensor ID: S000000031
Temperature: offline
Sensor ID: S000000032
Pressure: offline
Sensor ID: S000000033
O2: offline
Sensor ID: S000000036
CO2: offline
Sensor ID: S000000037
Bio human 1
Pulse: offline
Sensor ID: S000000112
Respiratory: offline
Sensor ID: S000000113
SpO2: offline
Sensor ID: S000000114
Body temp: offline
Sensor ID: S000000115
Systolic: offline
Sensor ID: S000000116
Diastolic: offline
Sensor ID: S000000117
Bio human 2
Pulse: offline
Sensor ID: S000000212
Respiratory: offline
Sensor ID: S000000213
SpO2: offline
Sensor ID: S000000214
Body temp: offline
Sensor ID: S000000215
Systolic: offline
Sensor ID: S000000216
Diastolic: offline
Sensor ID: S000000217
WORK FLOW
vision approach proof-of-principle design prototype iteration iteration product
Asterex Rocket engine
MAV and MDV
Jonathan Sensor System
Spacecraft
Mars Expedition
Transportation/Launch Systems
Life Support Systems
RESOURCES
+/- sign up for reports
+/- contact
+/- in the news